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Stochastic Resonance in Periodic Potentials 

L. Fronzoni 1 and R. Mannel la  ~ 

We have studied the motion of a particle in a periodic potential plus a bias, 
driven by a noise and a coherent forcing. The response (power spectrum) 
of the particle at the driving forcing frequency is considered for different values 
of the noise intensity and of the bias. It is shown via direct simulation that the 
response displays the phenomenon of stochastic resonance, although the 
phenomenology is somehow different from the one observed in the standard 
bistable system. 
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tions; linear response theory. 

1. I N T R O D U C T I O N  

There is no doubt  that  periodic potentials are very impor tant  and very 
c o m m o n  in physical science. M a n y  systems can be modeled by such a 
potential,  and virtually any issue of a physics journal  will contain some 
applications to real systems. It is impossible here to cite all the relevant 
literature, even having in mind the restricted field of  nonlinear stochastic 
physics. Some of the fundamental  ideas can be found in the book  by 
Risken (1) or  in recent reviews (Risken et al. ref. 2, M u n a k a t a  et al. in ref. 3; 
see also ref. 4 for more  recent references). 

H o w  would a system modeled by a periodic potential  behave if we 
added a periodic excitation to the stochastic forcing? Although the problem 
in itself has been studied in a number  of publications (see above references 
and also references in ref. 5), focusing at tention on the mobility of the 
Brownian particle as function of  the various parameters,  it has never been 
approached  before as a possible model  where stochastic resonance could 
take place. The phenomenon  of stochastic resonance, first employed to 
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described geological glacial periods, (6 8) has recently attracted quite a lot of 
attention (e.g., refs. 9 26). Models where stochastic resonance has been 
observed are generally two-states model (but see the papers by M. Dykman 
et aL in this issue). For  a very general review on stochastic resonance see 
also ref. 27. It is then very interesting to study whether the phenomenon is 
present even when there are more than two stable states. 

2. T H E  M O D E L  

The model we have studied is described by the Langevin equation 

eU(x) 
)? - I- ~(t) + A cos(cot) (1) 

8x 

where ~(t) is a Gaussian noise with zero average and correlation 

( ~(t) ~(s) ) = 2D6(t - s) (2) 

The potential chosen 

U(x)= -cos  x - ~ x  (3) 

broadly speaking corresponds to the potential of a biased Josephson 
junction. We have finally the Langevin equation 

2 = - s i n  x + c~ + ~(t) + A cos(cot) (4) 

There is a time-dependent Fokker-Planck equation corresponding to 
this Langevin equation, which reads 

c3t s i n x - c c - A  cos(cot)+D~--- x e (x ,  t) (5) 

In the "classical" approach to SR, one now considers the response of the 
signal x(t)  to a periodic modulation, looking at the Fourier transform at 
the driving frequency co. However, in the case of periodic potential there 
could be some ambiguity in the definition of the response of the system to 
the periodic forcing. This is because the system can in principle diffuse very 
far from the origin [i.e., from the minimum located at x = sin-1(c0]. 

We have considered here, then, the response of either sin(x) or 
~ ( t ) -  s~(t). 
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3. T H E  A N A L O G U E  S I M U L A T I O N  

To simulate the model of Eq. (4) a simple electronic circuit has been 
built. Analogue simulations of a pendulum motion [which is related to 
the potential of Eq. (4)] are not new: the idea is to use a phase-locked 
loop. (28-32) We followed the same approach, improving the basic idea using 
minimum component techniques (see Fronzoni in ref. 33 and also ref. 34). 
Straight simulation of the potential via specialized electronic components 
can be carried out (see ref. 4 and also McClintock and Moss in ref. 33), but 
we found that for the case at hand the phase-locked loop technique was 
more reliable. The scheme of the electronic circuit is shown in Fig. 1. The 
sum of the currents at point A gives Eq. (4), which is the equation we want 
to study. For  the noise input we used a home-made dichotomous noise 
generator (see Fronzoni in ref. 33 and also ref. 34). The low-pass filter 
between noise generator and circuit is chosen with a characteristic time 
constant much shorter than the integration time of the circuit, to make 
sure that the noise is perceived as white by the circuit. This is a necessary 
condition for a simple theoretical treatment of the problem. 

Particular care must be devoted to the stability of the electronic 
circuit. Although in principle at the beginning of each acquisition run the 
parameters of the electronic circuit could be set with good precision, drifts 
of the oscillator and unavoidable offsets which develop with time tend 
to alter the various "constants" of the circuit. As a very rough check, 
we always monitored the phase space {sin x, 2} of the system on an 
oscilloscope. For particular values of the parameters (for instance, c~ = 0) it 
is fairly easy to appreciate substantial deviations of the parameters from 
the preset values. Clearly, however, this is very much an empirical proce- 
dure: in practice we ran the simulations for some time and checked at the 
end of the run that the parameters had not drifted too much from their 

cr ---~--] 

NOISE ~ 
GENERATORI ' ] 

GENERATOR~-- 

[ A 

LOW-PASSFILTER ~ MULTIPLIER 

I GENERATOR 
~)lJ 

Fig. 1. Block diagram of the analogue circuit. The empty rectangular boxes are resistors. 
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initial value, discarding the acquired data if otherwise. The acquisition 
becomes critical as ~ approaches 1. This is the value (~ = 1) for which the 
potential becomes monotonic, and even small drifts of ~ can drastically 
change the behavior of the system. 

We remind the reader that our final goal was to study the possible 
onset of SR in the model of Eq. (4). Instead of looking at the more tradi- 
tional signal-to-noise ratio (SNR) in this model as function of the noise 
intensity, we decided to look at the signal at the driving frequency as the 
noise intensity is changed. There is no particular reason to do so, apart 
from the fact that if one was not interested at the background noise 
(necessary when the SNR is considered), it would be possible to obtain the 
amplitude and the phase relation of the signal with respect to the external 
driving in a most straightforward way. In our analogue simulation we took 
the various measurements sending the signal to a lock-in amplifier, driven 
by the external periodic forcing used in Eq. (4). 

The first interesting result we found is that when one studies the 
response of sin(x) to the periodic forcing there seems to be no increase of 
the signal at the driving frequency as the noise intensity grows. This may 
look very strange: one would expect that at small enough noise intensities 
and/or for small biases a periodic potential should behave not differently 
from a bistable system, i.e., from a system where SR is well established. On 
the other hand, SR is a large-noise-intensity phenomenon: the net result is 
that for the noise intensities at which SR should set in the Brownian par- 
ticle will be able to diffuse over many wells on the time scale of the periodic 
forcing, hence effectively removing any similarity with a bistable system. 
Also, we could say that sin(x) is a periodic function, hence it will not 
matter much whether a particle travels over many wells: as far as the SR 
seen in sin(x) is concerned, what really matters is that sin(x) has large 
excursions in phase with the external forcing. Obviously, even if this would 
be the case for small noise intensities, when the noise is large, there is no 
reason to expect that sin(x) and the external forcing should be strongly 
correlated. 

On the other hand, if we were able to look at x(t), we would expect 
to find a different result. We have already pointed out, however, that x(t) 
is not very significant (and almost unmeasurable!); but v(t)= ~(t) should 
have a behavior similar to the one shown by x(t) when the noise is 
changed, given that in the Fourier transform v(~o) = icox. Focusing then on 
v(t), as is clear form Fig. 2, the system does show an SR behavior as the 
noise intensity is changed. A more detailed discussion of the results will be 
presented in the next section. 



Stochast ic  Resonance in Periodic Potentials 505 

4. RESULTS 

In this section we present the experimental results. First, we will focus 
on the response to the periodic forcing observed in v(t). The output of the 
lock-in amplifier yields the quantities 

Ao = <~(t)A cos(cot)> 

Bo = <v(t)A sin(cot)> 

(6) 

(7) 

(8) 

from which we easily derive the amplitude of the response 

S = (A~ + B~) x/2 (9) 

and the phase between the signal and the external forcing 

-r = tan -  1 B_s 
Ao 

Figure 2 shows the response S at the driving frequency as the noise 
intensity is changed. For no bias we observed a monotonic increase to a 
limiting value as the noise is increased. It is clear from the figure that this 
limiting value does not depend on the bias, given that the data gathered for 
different biases fall on the same asymptotic curve. Intuitively, we can see 
why this behavior is to be expected. When the noise is very large the 
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Fig. 2. Response (S) at the external driving frequency vs. noise intensity, for different bias 
values. ~ = (  x ) 0.0, ( A )  0,5, ( + )  0.66, (E]) 0.8, and ( � 9  1.0. 
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particle feels the periodic potential only very little, and the motion is 
essentially described by 

2 = c~ + ~(t) + A cos(cot) (10) 

Averaging over the noise realizations, but in phase with the external 
periodic forcing, we have 

A 2 
(2A cos(cot)) - 2 (11) 

(2A sin(cot)) = 0 (12) 

which clearly shows that the response at the driving frequency co, given by 
A, should be independent of both c~ and D. 

The behavior at smaller noise intensities when the bias is different 
from zero is more complex. In particular, for larger biases the signal goes 
though a maximum before failing to its limiting value. 

Another interesting quantity which can be measured in the system is 
the phase between the response and the periodic forcing. From Eq. (10) we 
have that the response should be in phase with the external forcing at large 
noise intensity: furthermore, this result should be independent of the bias. 
If we go back to the response of x(t), remembering the phase relation 
between x and 2, we expect x(t) to be quadrature to the external forcing. 
Figure 3 clearly shows that our conjecture is indeed correct: we observe 
that the phase between 2 and the external forcing goes from zt/2 for small 
noise intensities to zero for large noise intensity. This transition takes place 
for noise intensities smaller than those at which the signal reaches its 
limiting value. 
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Some comments and comparisons with the results found in the 
standard bistable Duffing oscillator are due. In the Duffing oscillator it has 
been shown (25) that the phase between the external forcing and the signal 
starts from small (near zero) values at small noise intensities (for small 
driving frequencies), decreases to a minimum which is a sizable fraction of 
- ~ / 2  at intermediate noise intensities, and then increases again and 
reaches zero for large noise intensities (for other work and comments on 
the phase lag see also refs. 8, 13, 18-19, and 35). The intermediate values 
of the noise intensity correspond, roughly, to the value for which the SR 
phenomenon starts to set in. In our system, on the other hand, we have 
found that x starts from value close to zero for small noise intensities, then 
decreases monotonically to the limiting value of - g / 2  as the noise is 
increased. Also, the limiting value is reached for noise intensities noticeably 
smaller than the values for which the signal starts to increase. The par- 
ticular behavior of the phase observed here seems to suggest that the onset 
of SR in the system is somehow due to a mechanism different from the 
standard one, but perhaps analogous to the one observed in systems where 
the equilibrium populations of the stable state are different. (35 37) 

5. T H E O R E T I C A L  C O N S I D E R A T I O N S  

A very useful tool for understanding and predicing the onset of SR is 
the interpretation in terms of linear response theory (LRT): within this 
approach one interprets the phenomenon starting from the equilibrium 
(i.e., without the periodic forcing) correlation functions (see the papers by 
Dykman et al. in the present issue and also refs. 23-25). We will show that, 
on the other hand, in this case the agreement between theory and simula- 
tions is far from satisfactory. More theoretical work is required, given that 
it is not even established that LRT can be applied to the case at hand. 

Within the LRT approach to SR we can easily write the distribution 
in the presence of the periodic forcing, in the Born approximation. Some 
general examples can be found, for instance, in ref. 38. The idea is to see 
the time-dependent term in Eq. (5) as the perturbation, i.e., to split the 
operator of Eq. (5) as 

L = L o + L I = ~ x  sin x--c~ + D  - A cos(cot) 3-~ (13) 

After discarding an inhomogeneous term, irrelevant in the large-t limit, one 
obtains the perturbed equilibrium distribution as 

PA(x, t) = If eL~ ~) L,(s) P(x) ds (14) 
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or, more explicitly, 

P A(X, t) = --A t" 
Jo 

e L~ ") cos(cos) ~-~ P(x) ds (15) 

where P(x) is the equilibrium distribution associated to L o. 
Given that we have a bias in the potential, the motion can escape to 

infinity in one of two possible directions. We look then for an equilibrium 
distribution in the sense that we assume that there will be a constant flux 
of particles coming from infinity which replenishes the system as it is 
depleted. Under these assumptions the problem has been solved, for 
instance, in ref. 1, and the equilibrium distribution reads 

Ps,(X) = e V(x)/D N -  -D e V(s)/D ds (16) 

where N and C are determined from normalization and periodicity 
conditions. 

Now we want to, say, compute the response associated to sin(x) when 
the periodic forcing is switched on. This means that we must average sin(x) 
over the distribution of Eq. (15). This yields 

2~z t L t s (~ 
( s in (x ) )A= --A fo sin(X) foe ~ 'c~ (17) 

with the understanding, however, that the inner integral is really the 
propagator of the distribution obtained by applying the operator Lt(s) to 
the equilibrium distribution. 

After some simple algebra, exchanging the integrals, using the 
operator Lo* conjugate to Lo to "move" sin(x), and finally applying L t to 
P(x), we obtain 

Af~cos(cos) f~sin(x)( t_s){  OU } (sin(x))A-- D - - ~ x P ( X ) - C  dsdx (18) 

So far, no assumptions have been made. 
We rewrite Eq. (18) as 

(sin(x))A = - A f ~ c o s ( c o s ) f ~ " s i n ( x ) { - ~ x P ( X ) - C }  We -~(t-s) ds dx 

(19) 
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which obviously leads to the introduction of a kind of "size" R of the 
response, 

R-- f]'~ {- ~--~P(x)-C}sin(x)dx (20) 

and W is some factor which will depend, partly, on the exact dynamics. 
It would be possible, in principle, to compute exactly the quantities 

appearing in Eq. (18), for instance, via the continued-fraction method of 
ref. 1. On the other hand, we can try to give a rough estimate of these 
quantities. The simplest approach would be to replace the system with a 
much simpler bistable system. Obviously the system we are studying is a 
multistable system, and we then expect that if (for instance, when the noise 
intensity or the bias is large) the diffusion over more then one well becomes 
relevant, our approximation will turn out to be not very accurate. 

Introduce then the two Kramers rates corresponding to the escape 
from one well to, respectively, the lower well 2 and the upper well 2+. 
With simple algebra, defining 2 = 2(2 + 2+), we find that 

sin(x) - -~x P ( x ) - C  We-;'U) d x = R  (2 + 2 + )  2 

It is now straightforward to evaluate the quantities apparing in 
Eq. (21) and to derive a response function for the system. 
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Fig. 4. Signal at the external driving frequency vs. noise. Symbols are numerical simulations 
for different values of a ([] = 0.1; �9 = 0.5), solid curves are theoretical predictions using both 
the motion at the bottom of the wells and the Kramers escape between wells, and dashed lines 
are theoretical predictions using only the motion at the bottom of the wells. 
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The comparison between theory and the result of numerical simula- 
tions relative to the response of sin(x) is shown in Fig. 4 (solid lines): the 
agreement is not very satisfactory, and in particular it becomes worse as 
the noise intensity or the bias is increased. A possible explanation of the 
disagreement could be that the periodic nature of sin(x) implies that the 
important phenomenon is not so much the activation process between 
the potential wells (there is invariance under x -~ x + 2rt) as it is the motion 
within each well. The theory employing only the oscillations at the bottom 
of the wells (still taking into account the "size" factor R) is shown as the 
dashed lines in Fig. 4. Work is under way to derive a better approximation 
for the correlation function appearing in Eq. (18). 

6. C O N C L U S I O N S  

We have investigated the phenomenon of stochastic resonance for a 
Brownian particle moving in a biased periodic potential. The physical 
system we used is a phase-locked loop. We briefly discussed a problem 
natural to the system, i.e., that the response of the variable coupled to 
the external driving is ill defined. We then turned to two other possible 
physical quantities, looking for the response of either the velocity or the 
deterministic force. We showed that when the response of the deterministic 
forcing (sin x) is considered, the periodic external driving .seems unable to 
give an increase of the signal versus noise intensity. On the other hand, 
when the velocity is considered we observe a strong increase of the signal 
at the external driving frequency with increasing noise. Analogies and 
differences between the present model and the standard bistable system 
have been discussed, with particular attention to the phase lag between 
signal and external periodic forcing. Finally, we attempted to understand 
the behavior of the system in terms of linear response theory, but the 
agreement between simulations and theory, possibly due to the crude 
approximations put forward, is far from satisfactory. Theoretical work to 
refine our approximations is currently under way. 
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